import tensorflow as tf
from tensorflow.keras.datasets import fashion_mnist
import matplotlib.pyplot as plt
import pandas as pd
(train_data, train_labels), (test_data, test_labels) = fashion_mnist.load_data()
index = 120
plt.imshow(train_data[index], cmap=plt.cm.binary)
plt.title(class_names[train_labels[index]])
tf.random.set_seed(42)
model = tf.keras.Sequential([
tf.keras.layers.Flatten(),
tf.keras.layers.Dense(10, activation="relu"),
tf.keras.layers.Dense(10, activation="relu"),
tf.keras.layers.Dense(10, activation="softmax")
])
model.compile(
loss=tf.keras.losses.SparseCategoricalCrossentropy(),
optimizer=tf.keras.optimizers.Adam(),
metrics=['accuracy'],
)
history = model.fit(train_data, train_labels, epochs=4)
model.evaluate(test_data, test_labels)
"""
Accuracy is not that greate but it's ok!
We can improves this
313/313 [==============================] - 1s 2ms/step - loss: 1.0432 - accuracy: 0.5858
[1.0431597232818604, 0.5857999920845032]
"""